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Abstract

This paper presents Baltag’s system STS along with the proof of its consistency relative
to ZFC plus a large cardinal assumption. The goal is to streamline the construction
of the canonical model while emphasizing its essential relation to similar methods in
traditional modal logic.
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1 Introduction

Sets are objects characterized uniquely by their members. We can phrase this as a sort of
principle: sets are uniquely determined up to observational equivalence. In traditional ax-
iomatic systems (ZFC, for example) this notion of “observational equivalence” is captured
by the axiom of extensionality:

∀x∀y∀z((z ∈ x↔ z ∈ y) → x = y).

This axiom, together with the more “constructive” axioms (like comprehension and re-
placement), give the principle that every collection of sets (that is not too big) uniquely
determines a set. The recursive nature of this principle is well suited for ZFC which in-
cludes the axiom of foundation. That is, if we want to determine the structure of a set, we
look at its members. Then the members of those members. And so on. But we are assured
this process will stop because the universe is well-founded. For a more general theory of
sets, however, this will fail. For example, if we try to analyze the set a = {a} in this way,
we will never stop. So the axioms and principles must be generalized.

This generalization was taken up by Aczel and Barwise and Moss. The appropriate
generalization of observational equivalence for non-wellfounded set theory, ZFC−, turns
out to be bisimilarity. This results from thinking of the objects of the universe as pointed
graphs. That is, instead of starting with the empty set and building the universe upwards
synthetically, we assume we are given some complex object, and we unravel its structure
downwards analytically. Then the corresponding generalized axiom is:

Antifoundation Axiom (AFA): Every formula of infinitary modal logic
characterizes a unique set.1

This generalization, however, is still unable to do everything one might reasonably want.
For example, the universe itself is a natural object to want to talk about. But the universe
is not characterisable by bisimulation (for where would this “bisimulation” exist?) At the
end of [2], Barwise and Moss asked for a further generalization of set theory—one that can
handle “large” sets (i.e. proper classes with respect to ZFC or ZFA = ZFC− +AFA).

This generalization was taken up by Baltag in [1]. The new notion of observational
equivalence becomes infinitary modal equivalence and the updated axiom is:

1This is not how AFA is usually presented. It is generally stated (as in [2]) as every pointed graph is
bisimilar to a unique set. But these two formulations are equivalent by the following theorem of modal
logic:

For every world s in every model M , there is a formula ϕ of infinitary modal logic such that:

(i) M, s |= ϕ

(ii) if N, t |= ϕ, then M, s is bisimilar to N, t.

Our formulation given above, however, will allow for better comparison with the axiom SAFA to be
presented below.
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Super-Antifoundation Axiom (SAFA): Every weakly consistent infinitary
modal theory characterizes a unique set.

That is, two objects of the universe are identical if and only if they have the same infinitary
modal theory. And every (weakly consistent) modal theory determines a set. SAFA is the
central axiom of Baltag’s new system: STS (Structual Theory of Sets). It is clear, given
the form in which we have presented AFA, that SAFA is much stronger existentially. The
motivation for this formulation (in particular, using weakly consistent infinitary modal
theories) is being able to give partial descriptions of objects that would otherwise be too
large to refer to in the system. The advantage is that we can now talk about “large” sets.
Consider the set

U = {♦ϕ : ϕ is consistent}.

Even without the precise definitions, we can see what this means. U is a set that “sees”
every “possibility.” Intuitively, this represents the universal set. Once the formalization is
in place, this is exactly what we get.

In this paper, the axiomatic system STS is presented. We then prove its consistency
(relative to ZFC plus the existence of a large cardinal) by constructing the canonical model.
Whereas Baltag’s presentation emphasizes how STS is the natural generalization of ZFC−

and AFA, showing the set-theoretic evolution of the concepts involved, we will emphasize
the essential modal flavor of the result. Therefore the goal of this paper is to streamline
and emphasize the canonical model approach. For more background, motivation, and
applications, the reader is referred to [1].

Remark Throughout this paper, it is understood that we are working with the infinitary
modal language ML∞. But the “infinitary” will often be dropped.

2 The Axiom System STS

In this section we present the axiom system for STS, as presented by Baltag. The language
consists of two binary symbols ∈ and |= and a unary symbol V . Intuitively, these represent
membership (between two sets—objects of the universe), satisfaction (of a formula by a
set—both objects of the universe) and the iterative hierarchy. There are three goups of
axioms: the basic axioms, the satisfaction axioms, and the super-antifoundation axiom.

Basic Axioms:

• Extensionality

• Closure under singletons and finite unions.

• V is transitive

• V is a model of Infinity, Replacement, Union, and Choice.
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Satisfaction Axioms:

• a |= ϕ iff a 6|= ϕ

• a |=
∧

Φ iff a |= ϕ for all ϕ ∈ Φ

• a |= ♦ϕ iff a′ |= ϕ for some a′ ∈ a

Super-Antifoundation Axiom:

• Existence: Every weakly consistent infinitary modal theory describes a set.

• Uniqueness: Sets are uniquely determined by their modal theories.

Much can be said about why these axioms were chosen. We limit ourselves here to just
a few remarks. We assume the first two basic axioms because these are essential to our
concept of set. The second two are also essential to the traditional conception of set, but
our intuitions may deceive us with “large” sets. But by assuming these hold at least for
some class V (the sets of “small” size), we retain the traditional set-theoretic models as
submodels.2 Also, by assuming the class V exists, we have an easy way to define infinitary
modal formulas as sets in the system (by a version of the usual Gödel coding), so that the
remaining axioms make sense. The satisfaction axioms are needed to define satisfaction for
large sets (it can be defined for small sets within the system). And SAFA captures our
new notion of observational equivalence that characterizes the system.

3 Constructing The Canonical Model

This section and the next constitute the heart of the paper. Our goal is to prove that the
new set theory STS is consistent relative to ZFC plus a large cardinal assumption. This
section contains the first step in that direction: constructing a canonical model. To do this,
we assume we have a model of ZFC with a weakly compact cardinal κ. We then define
the infinitary modal language MLκ within ZFC and construct a model based on sets of
MLκ formulas. The construction is guided by analogy with canonical model constructions
used in the basic completeness proofs for normal modal logics.

We start by presenting some simple definitions.

Definition A cardinal κ is weakly compact if there is no set Γ of formulas in the language
Lκω with the following properties:

• Γ has cardinality κ

• Γ has no model
2The powerset axiom can be proved from the others to hold in V . So we need not assume it.
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• Every subset of Γ of cardinality < κ has a model.

Since we are working in ZFC, we can do the usual coding of the language into the system.
So we can assume that the symbols ⊥, ¬,

∧
, and ♦ are sets.

Definition The infinitary modal language MLκ is defined recursively as follows:

• ⊥ ∈MLκ

• ¬ϕ ∈MLκ for all ϕ ∈MLκ

•
∧

Φ ∈MLκ for all Φ ⊂MLκ with cardinality < κ.

• ♦ϕ ∈MLκ for all ϕ ∈MLκ.

We can also define, in ZFC, the notion of satisfaction for sets (and then extend it to a
notion of satisfaction by a pointed graph—a set of sets with a relation). This is done
by some coding scheme as in other set-theoretic relative consistency proofs. We can then
define the following notions:

Definition

• A set Σ ⊆MLκ is a theory.

• A theory Σ is consistent if it is satisfied by some graph.

• A theory Σ is weakly consistent if every subset of Σ of size < κ is consistent.

• A theory Σ is a maximally consistent set (an mcs) if it is consistent and has no
consistent proper extension.

With these notions in hand (and defined in ZFC), we can construct the canonical
model. The construction is as usual. The domain of the model will be all maximally
consistent sets of formulas of the modal language. And the relation will be that one set
“sees” another if every boxed formula of the former appears “deboxed” in the latter.

Definition

• W = {Σ ⊆MLκ : Σ is an mcs}.

• The relation ∈M on W is given by:

w ∈M u iff ∀ϕ(ϕ ∈ w ⇒ ♦ϕ ∈ u)
iff ∀ϕ(�ϕ ∈ u⇒ ϕ ∈ w)

• The canonical model is M = (W,∈M ).3

3Note that this structure is usually defined as the canonical frame. But our modal language has no
proposition letters, so the distinction can safely be ignored.
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• VM = {thκ(x) : x ∈ Vκ} (where thκ(x) = {ϕ ∈MLκ : M,x |= ϕ}).4

• |=M= {(w,ϕ) ∈W ×MLκ : ϕ ∈ w}.

The last two parts of this definition are needed to interpret the symbols V and |= of our
extended set-theoretic language. This is the only part that doesn’t appear in the usual
modal completeness proofs.

Now that we have constructed something, it remains to show that it really is a model for
the axioms of STS. We do this in two steps. First, we prove the usual lemmas associated
with canonical models. This emphasizes the modal approach. Then, once we have the truth
lemma at our disposal, we can show that our new axioms are satisfied by (M,VM , |=M ).

4 The Lemmas

In the last section, we constructed the canonical model M . The goal of this section is to
prove the truth lemma. We follow closely the exposition of [3]. From now on, Σ denotes a
theory of MLκ. Recall that an mcs is a maximally consistent set of formulas from MLκ.

Lemma 4.1 (Properties of mcss) If Σ is an mcs and Φ ⊆ML∞ has size < κ, then:

(i) (¬ϕ) ∈ Σ iff ϕ 6∈ Σ

(ii)
∧

Φ ∈ Σ iff Φ ⊆ Σ

Proof The proof of (i) is as usual. The proof of (ii) proceeds in the usual way, with only
a slight generalization (to handle the infinite, rather than binary, conjunction). a

Lemma 4.2 (Lindenbaum) If Σ is weakly consistent, then it is included in some mcs.

Proof 5 Let Σ ⊂ MLκ be weakly consistent. By the definition of (and the fact that κ is
a) weakly compact cardinal, Σ is consistent. Now we can mimic the proof of the standard
version of Lindenbaum’s lemma. Let {ϕα : α ∈ κ} be an enumeration of MLκ. We define
a sequence by transfinite recursion on κ:

Σ0 = Σ

Σα+1 =
{

Σα ∪ {ϕα}, if this is consistent
Σα ∪ {¬ϕα}, otherwise

Σλ =
⋃
β<λ

Σβ for limit ordinals λ

4Just to be clear, V M is not the canonical valuation, but the interpretation of the cumulative hierarchy
in our new model.

5This proof differs from that in [1]. There, Baltag uses the notion of pointed graph to show that maximally
consistent theories correspond with pointed graphs, and then derive Lindenbaum’s lemma from this. The
proof here remains closer to the spirit of the standard proofs of modal logic.
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We then set Σ+ =
⋃

α<κ Σα, which clearly contains Σ and is an mcs. a

Lemma 4.3 (Existence) For any w ∈ W,ϕ ∈ MLκ, if ♦ϕ ∈ w then there exists u ∈ W
such that u ∈M w and ϕ ∈ u.

Proof Suppose ♦ϕ ∈ w. Toward the end of constructing a set v+ ∈W such that v+ ∈M w
and ϕ ∈ v, consider the theory v = {ϕ} ∪ {ψ : �ψ ∈ w}. To show v is consistent, we need
only show that every subset of size < κ is (and then appeal the the weak compactness of
κ). So suppose a subset v− ⊆ v of size < κ is inconsistent. Then the formula

∧
v− ∧ ϕ

is inconsistent. And then so is ♦(
∧
v− ∧ ϕ). But ♦(

∧
v− ∧ ϕ) ∈ w since w is an mcs

containing ♦ϕ and �ψ for every ψ ∈ v−. Then w would be inconsistent, contradicting the
fact that it’s an mcs.

So v is weakly consistent, hence consistent. By Lemma 4.2, it is included in some mcs
v+. Now, by construction, ϕ ∈ v+ and v+ ∈M w. a

With the Existence Lemma, we can easily prove the Truth Lemma, which will be our
main tool for proving consistency in the next section.

Lemma 4.4 (Truth) For every w ∈W and every ϕ ∈MLκ, M,w |= ϕ⇔ ϕ ∈ w.

Proof The proof proceeds by induction on ϕ. The base case is ϕ ≡ ⊥. Notice that
M,w 6|= ⊥ and ⊥ 6∈ w (since w is an mcs) always. So the lemma holds. The boolean cases
follow directly from Lemma 4.1:

M,w |= ¬ϕ iff M,w 6|= ϕ

iff ϕ 6∈ w
iff ¬ϕ ∈ w

where the second equivalence follows from the induction hypothesis, while the third was
established as a property of mcss. Similarly,

M,w |=
∧

Φ iff M,w |= ϕ for each ϕ ∈ Φ

iff ϕ ∈ w for each ϕ ∈ Φ

iff
∧

Φ ∈ w.

For the modal case,

M,w |= ♦ϕ iff ∃v(v ∈M w ∧M,v |= ϕ)
iff ∃v(v ∈M w ∧ ϕ ∈ v)
iff ♦ϕ ∈ w.

The equivalence between the second and third statements follows from the induction hy-
pothesis. The fourth follows from the third by the definition of ∈M . And the third follows
from the fourth by Lemma 4.3. a
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5 Consistency of STS

This section contains the main result of the paper (though maybe less interesting than the
previous two from the view of modal logic). The result is one of relative consistency proved
by Baltag in [1]. We have assumed that ZFC plus “there exists an infinite weakly compact
cardinal” is consistent, and so has a model. We have constructed from that model another
structure, (M,VM , |=M ). We now show that this new structure is a model of the axioms
of STS, hence proving that STS is (relatively) consistent. Since the proof of the theorem
is fairly straightfoward (and of a more set-theoretic than modal character), we prove only
a few cases to show how it works.

Theorem 5.1 (M,VM , |=M ) is a model of STS.

Proof We first show that extensionality holds, since this is one of the more basic yet also
essential characteristics of set theory.

Extensionality: Let w, u ∈ W and ∀v ∈ W (v ∈M w ↔ v ∈M u). We want to show
w = u or, equivalently, ∀ϕ ∈ MLκ(ϕ ∈ w ↔ ϕ ∈ u). Notice that by the definition
of ∈M ,∀v ∈ W (v ∈M w ↔ v ∈M u) implies that {ϕ : ♦ϕ ∈ w} = {ϕ : �ϕ ∈ u} and
{ϕ : �ϕ ∈ w} = {ϕ : ♦ϕ ∈ u}. We can now easily show ϕ ∈ w ↔ ϕ ∈ u by induction
on ϕ. The base and boolean cases are straightforward. So suppose ♦ϕ ∈ w. Then
�ϕ ∈ u (by {ϕ : ♦ϕ ∈ w} = {ϕ : �ϕ ∈ u}). Because ♦ϕ ∈ w, we know there is a v
such that v ∈M w and ϕ ∈ v. But then v ∈M u (by our original assumption that w
and u have the same ∈M -elements). So ♦ϕ ∈ u. So w ⊆ u. The other containment
is obtained similarly by using {ϕ : �ϕ ∈ w} = {ϕ : ♦ϕ ∈ u}.

We now show that SAFA holds, since it is the axiom that distinguishes STS from other
set theories.

SAFA existence: We want to show that given some weakly consistent modal theory
(in M), it describes a set (that is, is satisfied by a set in M). So let w− be a weakly
consistent theory (in the model M). Then w− is weakly consistent.6 So, by Lemma
4.2, it is contained in an mcs w ∈ W . By Lemma 4.4, M,w |= w−. So our weakly
consistent theory describes some set (all with respect to the canonical model M).

SAFA uniqueness: We want to show that sets (elements w ∈ W ) are uniquely
defined by their modal theories. But since our sets are mcss, it turns our that they
are their modal theories. From this it immediately follows that if thκ(w) = thκ(u),
then w = u. So all that remains is to notice that

thκ(w) = {ϕ ∈MLκ : M,w |= ϕ}
6This step actually requires us to prove that the notion of “weak consistency” is absolute. This is an

obvious yet extremely tedious part of any relative consistency proof. So we omit it here.
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= {ϕ ∈MLκ : ϕ ∈ w} by Lemma 4.4
= w. a

Corollary 5.2 STS is consistent relative to ZFC plus the existence of an infinite weakly
compact cardinal.

Proof This follows immediately from the theorem, since we constructed (M,VM , |=M ) by
assuming a model of ZFC plus “there is a weakly compact cardinal” and only used those
axioms to show that (M,VM , |=M ) is indeed a model of STS. a

6 Conclusion

Thus we have established the relative consistency of the axiomatic system STS. The
theorem, though maybe superficially unrelated to modal logic, relies heavily on modal
techniques. Not only does the axiomatic system (SAFA in particular) depend on the
infinitary modal language (which can be defined by the other axioms), but we proved its
relative consistency via the construction of a canonical model—a paradigm of modal logic.

Now that we have proven the relative consistency of a new system of axioms, two
obvious questions might arise:

1. What good is a relative consistency proof?

2. What do we gain with STS?

Both questions have short simple and long complicated answers. We provide the short
answers here.7

The relative consistency proof tells us that if ZFC plus the large cardinal assumption
is consistent, then so is STS. That is, insofar as talking about set theory as we usually
do makes sense (as most mathematicians/logicians/philosophers believe it does), talking
about sets in the way prescribed by STS makes sense also. Thus we should not be worried
about STS being too powerful or strange, for it is on essentially the same footing as our
beloved ZFC.

As to the second question, we gain expressive power. It has long been a somewhat
undesirable aspect of ZFC (and AFA, NGB, and almost every theory of sets) that we
cannot talk about certain things we’d like to talk about. The most notable example is
the universal set—the set that contains everything. The set-theoretic paradoxes (which
show, among other things, that the “set” of all sets cannot really be a set) are infamous
in philosophy. But now it’s as if we have found a loophole. We have crept up on the
universal set using partial descriptions—weakly consistent infinitary modal theories—and

7To find the long answers for the first question, check any book on the philosophy of mathematics or set
theory. For a more in depth analysis of the second question, see [1].
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captured it. In particular, it is defined by the set {♦ϕ : ϕ is consistent}, as mentioned in
the introduction. Being able to talk about the set of all sets is philosophical motivation
enough for seriously considering STS. But there are also “real” applications presented in
the second half of [1], to which the reader is now referred.
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